Module topicnet.viewers.spectrum
A few ways to obtain "decent" solution to TSP problem
which returns a spectre of topics in our case.
If speed is the essence I recommend to use functions providing
good initial solution. Which are, get_nearest_neighbour_init.
If that solution is not good enough use annealing heuristic (get_annealed_spectrum).
Another good but time-heavy option is full check with get_three_opt_path.
Performs well on < 50 topics.
Within a few runs with right temperature selected it can provide a
solution better than the initial.
Expand source code
"""
A few ways to obtain "decent" solution to TSP problem
which returns a spectre of topics in our case.
If speed is the essence I recommend to use functions providing
good initial solution. Which are, get_nearest_neighbour_init.
If that solution is not good enough use annealing heuristic (get_annealed_spectrum).
Another good but time-heavy option is full check with get_three_opt_path.
Performs well on < 50 topics.
Within a few runs with right temperature selected it can provide a
solution better than the initial.
""" # noqa: W291
import numpy as np
import warnings
from scipy.spatial import distance
from tqdm import tqdm
from .top_tokens_viewer import TopTokensViewer
from .base_viewer import BaseViewer
def get_nearest_neighbour_init(phi_matrix, metric='jensenshannon', start_topic=0):
"""
Given the matrix calculates the initial path by nearest neighbour heuristic.
Parameters
----------
phi_matrix : np.array of float
a matrix of N topics x M tokens from the model
metric : str
name of a metric to compute distances (Default value = 'jensenshannon')
start_topic : int
an index of a topic to start and end the path with (Default value = 0)
Returns
-------
init_path : list of int
order of initial topic distribution
"""
init_path = [start_topic, ]
connection_candidates = [int(topic) for topic in np.arange(phi_matrix.shape[0])
if topic not in init_path]
neighbour_vectors = phi_matrix[connection_candidates, :]
while len(connection_candidates) > 0:
last_connection = phi_matrix[[init_path[-1]]]
nearest_index = distance.cdist(last_connection, neighbour_vectors, metric=metric).argmin()
init_path.append(connection_candidates[nearest_index])
connection_candidates = [int(topic) for topic in np.arange(phi_matrix.shape[0])
if topic not in init_path]
neighbour_vectors = np.delete(neighbour_vectors, nearest_index, axis=0)
init_path.append(start_topic)
init_path = [int(topic) for topic in init_path]
return init_path
def generate_all_segments(n):
"""
Generates all segments combinations for 3-opt swap operation.
Parameters
----------
n : int > 5
length of path for fixed endpoint
Yields
-------
list of int
"""
for i in range(n-1):
for j in range(i + 2, n - 1):
for k in range(j + 2, n - 1): # + (i > 0)
yield [i, j, k]
def generate_three_opt_candidates(path, sequence):
"""
Generates all possible tour connections and filters out a trivial one.
Parameters
----------
path : np.array of float
square matrix of distances between all topics
sequence : list of int
list of indices to perform swap on
Yields
------
list of int
possible tour
"""
chunk_start = path[:sequence[0] + 1]
chunk_one = path[sequence[0] + 1:sequence[1] + 1]
chunk_two = path[sequence[1] + 1:sequence[2] + 1]
chunk_end = path[sequence[2] + 1:]
for change_chunks in [True, False]:
middle_chunks = [chunk_two, chunk_one] if change_chunks else [chunk_one, chunk_two]
for reverse_first_chunk in [True, False]:
if reverse_first_chunk:
first_chunk = middle_chunks[0][::-1]
else:
first_chunk = middle_chunks[0]
for reverse_second_chunk in [True, False]:
if reverse_second_chunk:
second_chunk = middle_chunks[1][::-1]
else:
second_chunk = middle_chunks[1]
if change_chunks or reverse_first_chunk or reverse_second_chunk:
tour = chunk_start + first_chunk + second_chunk + chunk_end
yield tour
def make_three_opt_swap(path, distance_m, sequence, temperature=None):
"""
Performs swap based on the selection candidates,
allows for non-optimal solution to be accepted
based on Boltzman distribution.
Parameters
----------
path : list of int
current path
distance_m : np.array of float
square matrix of distances between all topics
sequence : list of int
list of indices to perform swap on
temperature : float
"temperature" parameter regulates strictness of
the new candidate choice (Default value = None)
if None - works in a regime when only better solutions are chosen
This regime is used for 3-opt heuristic
Returns
-------
path : list of int
best path after the permutation
val : float
a value gained after the path permutation
""" # noqa: W291
cut_connections = sum([[path[ind], path[ind + 1]] for ind in sequence], [])
baseline = np.sum(distance_m[cut_connections[:-1], cut_connections[1:]])
# 6 == len(cut_connections) always
new_connections = list(generate_three_opt_candidates(cut_connections,
generate_index_candidates(6)))
candidates = list(generate_three_opt_candidates(path, sequence))
scores = [np.sum(distance_m[new[:-1], new[1:]]) - baseline for new in new_connections]
best_score = np.min(scores)
if best_score < 0.0:
path = candidates[np.argmin(scores)]
val = best_score
else:
if temperature is None:
val = 0.0
else:
# 1e-8 saves from division by 0
boltzman = np.exp(- best_score / temperature)
val = 0.0
if np.random.rand() > boltzman:
path = candidates[np.argmin(scores)]
val = best_score
return path, val
def get_three_opt_path(path, distance_m, max_iter=20):
"""
Iterative improvement based on 3 opt exchange.
Parameters
----------
path : list of int
path to optimize
distance_m : np.array of float
square matrix of distances between all topics,
attempt at optimizing path from the other end
max_iter : int
maximum iteration number (Default value = 20)
Returns
-------
path : list of int
end optimization of the route
""" # noqa: W291
count_iter = 0
while True and count_iter <= max_iter:
delta = 0
for segment in generate_all_segments(len(path)):
path, d = make_three_opt_swap(path, distance_m, segment)
delta += d
count_iter += 1
if count_iter >= max_iter:
warnings.warn('Reached maximum iterations', UserWarning)
if delta >= 0:
break
return path
def generate_index_candidates(n):
"""
Randomly chooses 3 indexes from the path.
Does not swap the first or the last point because they fixed.
Parameters
----------
n : int > 5
length of the path
Returns
-------
segment: list of int
sorted list of candidates for 3 opt swap optimization
""" # noqa: W291
segment = np.zeros(3, dtype='int')
first_interval = np.arange(n - 5)
segment[0] = np.random.choice(first_interval)
second_interval = np.arange(segment[0] + 2, n - 3)
segment[1] = np.random.choice(second_interval)
third_interval = np.arange(segment[1] + 2, n - 1)
segment[2] = np.random.choice(third_interval, 1)
return segment
def get_annealed_spectrum(phi_matrix,
t_coeff,
start_topic=0,
metric='jensenshannon',
init_path=None,
max_iter=1000000,
early_stopping=100000,):
"""
Returns annealed spectrum for the topics in the Phi matrix
with default metrics being Jensen-Shannon.
Parameters
----------
phi_matrix : np.array of float
Phi matrix of N topics x M tokens from the model
t_coeff : float
coefficient that brings ambiguity to the process,
bigger coefficient allows to jump from local minima.
start_topic : int
index of a topic to start and end the path with (Default value = 0)
metric : str
name of a metric to compute distances (Default value = 'jensenshannon')
init_path : list of int
initial route, contains all numbers from 0 to N-1,
starts and ends with the same number from the given range (Default value = None)
max_iter : int
number of iterations for annealing (Default value = 1000000)
early_stopping : int
number of iterations without improvement before stop (Default value = 100000)
Returns
-------
best_path : list of int
best path obtained during the run
best_score : float
length of the best path during the run
""" # noqa: W291
distance_m = distance.squareform(distance.pdist(phi_matrix, metric=metric))
np.fill_diagonal(distance_m, 10 * np.max(distance_m))
if init_path is None:
current_path = get_nearest_neighbour_init(phi_matrix,
metric=metric,
start_topic=start_topic)
else:
current_path = init_path
if len(current_path) < 6:
warnings.warn('The path is too short, returning nearest neighbour solution.',
UserWarning)
return current_path, np.sum(distance_m[current_path[:-1], current_path[1:]])
best_score = np.sum(distance_m[current_path[:-1], current_path[1:]])
best_path = current_path
running_score = best_score
no_progress_steps = 0
for i in tqdm(range(max_iter), total=max_iter, leave=False):
temperature_iter = t_coeff * (max_iter / (i + 1))
sequence = generate_index_candidates(len(current_path))
current_path, score = make_three_opt_swap(current_path,
distance_m,
sequence,
temperature=temperature_iter)
running_score += score
if running_score < best_score:
best_path = current_path
best_score = running_score
no_progress_steps = 0
else:
no_progress_steps += 1
if no_progress_steps >= early_stopping:
break
return best_path, best_score
class TopicSpectrumViewer(BaseViewer):
def __init__(
self,
model,
t_coeff=1e5,
start_topic=0,
metric='jensenshannon',
init_path=None,
max_iter=1000000,
early_stopping=100000,
verbose=False,
class_ids=None
):
"""
Class providing wrap around for functions
that allow to view a collection of topics
in order of their similarity to each other.
Parameters
----------
model : TopicModel
topic model from TopicNet library
t_coeff : float
coefficient for annealing, value should be chosen
start_topic : int
number of model topic to start from
metric : string or function
name of the default metric implemented in scipy or function
that calculates metric based on the input matrix
init_path : list of int
initial tour that could be provided by the user
max_iter : int
number of iterations for annealing
early_stopping : int
number of iterations without improvement before stop
verbose : boolean
if print the resulting length of the tour
class_ids : list of str
parameter for model.get_phi method
contains list of modalities to obtain from the model
(Default value = None)
""" # noqa: W291
super().__init__(model=model)
self.metric = metric
self.start_topic = start_topic
self.t_coeff = t_coeff
self.init_path = init_path
self.verbose = verbose
self.early_stopping = early_stopping
self.max_iter = max_iter
self.class_ids = class_ids
def view(self, class_ids=None):
"""
The class method returning ordered spectrum of
the topics.
Parameters
----------
class_ids : list of str
parameter for model.get_phi method
contains list of modalities to obtain from the model (Default value = None)
ordered_topics : list of str
topic names from the model ordered as spectrum
""" # noqa: W291
# default get_phi returns N x T matrix while we implemented T x N
if class_ids is None:
class_ids = self.class_ids
model_phi = self.model.get_phi(class_ids=class_ids).T
spectrum, distance = get_annealed_spectrum(model_phi.values,
self.t_coeff,
metric=self.metric,
start_topic=self.start_topic,
init_path=self.init_path,
max_iter=self.max_iter,
early_stopping=self.early_stopping,)
if self.verbose:
print('the resulting path length: ', distance)
ordered_topics = list(
model_phi
.iloc[spectrum]
.index.values
)
return ordered_topics
def view_from_jupyter(
self,
class_ids=None,
display_output=True,
give_html=False,
**kwargs
):
"""
TopicSpectrumViewer method recommended for use
from jupyter notebooks
returns ordered list of topics minimizing
path that connects all of them in topic space
and visualizes their top tokens in given topic order
Parameters
----------
class_ids : list of int
class ids for documents in topic needed only for tfidf method
display_output
if provide output at the end of method run
give_html
return html string generated by the method
Returns
-------
out_html : str
html string of the output
Another Parameters
------------------
**kwargs
*kwargs* are optional `~.TopTokenViewer` properties
"""
from IPython.display import display_html
if 'digits' in kwargs:
digits = kwargs.pop('digits')
else:
digits = 5
spectrum_order = self.view(class_ids=class_ids)
print('Viewing topics in the following order:')
topic_order = '→'.join(spectrum_order)
display_html(topic_order, raw=True)
out_html = (TopTokensViewer(
model=self.model,
class_ids=class_ids,
**kwargs
)
.view_from_jupyter(
topic_names=spectrum_order,
digits=digits,
display_output=display_output,
give_html=give_html)
)
if give_html:
return '<br />'.join([topic_order, out_html])
Functions
def generate_all_segments(n)
-
Generates all segments combinations for 3-opt swap operation.
Parameters
n
:int > 5
- length of path for fixed endpoint
Yields
list
ofint
Expand source code
def generate_all_segments(n): """ Generates all segments combinations for 3-opt swap operation. Parameters ---------- n : int > 5 length of path for fixed endpoint Yields ------- list of int """ for i in range(n-1): for j in range(i + 2, n - 1): for k in range(j + 2, n - 1): # + (i > 0) yield [i, j, k]
def generate_index_candidates(n)
-
Randomly chooses 3 indexes from the path.
Does not swap the first or the last point because they fixed.Parameters
n
:int > 5
- length of the path
Returns
segment
:list
ofint
- sorted list of candidates for 3 opt swap optimization
Expand source code
def generate_index_candidates(n): """ Randomly chooses 3 indexes from the path. Does not swap the first or the last point because they fixed. Parameters ---------- n : int > 5 length of the path Returns ------- segment: list of int sorted list of candidates for 3 opt swap optimization """ # noqa: W291 segment = np.zeros(3, dtype='int') first_interval = np.arange(n - 5) segment[0] = np.random.choice(first_interval) second_interval = np.arange(segment[0] + 2, n - 3) segment[1] = np.random.choice(second_interval) third_interval = np.arange(segment[1] + 2, n - 1) segment[2] = np.random.choice(third_interval, 1) return segment
def generate_three_opt_candidates(path, sequence)
-
Generates all possible tour connections and filters out a trivial one.
Parameters
path
:np.array
offloat
- square matrix of distances between all topics
sequence
:list
ofint
- list of indices to perform swap on
Yields
list
ofint
- possible tour
Expand source code
def generate_three_opt_candidates(path, sequence): """ Generates all possible tour connections and filters out a trivial one. Parameters ---------- path : np.array of float square matrix of distances between all topics sequence : list of int list of indices to perform swap on Yields ------ list of int possible tour """ chunk_start = path[:sequence[0] + 1] chunk_one = path[sequence[0] + 1:sequence[1] + 1] chunk_two = path[sequence[1] + 1:sequence[2] + 1] chunk_end = path[sequence[2] + 1:] for change_chunks in [True, False]: middle_chunks = [chunk_two, chunk_one] if change_chunks else [chunk_one, chunk_two] for reverse_first_chunk in [True, False]: if reverse_first_chunk: first_chunk = middle_chunks[0][::-1] else: first_chunk = middle_chunks[0] for reverse_second_chunk in [True, False]: if reverse_second_chunk: second_chunk = middle_chunks[1][::-1] else: second_chunk = middle_chunks[1] if change_chunks or reverse_first_chunk or reverse_second_chunk: tour = chunk_start + first_chunk + second_chunk + chunk_end yield tour
def get_annealed_spectrum(phi_matrix, t_coeff, start_topic=0, metric='jensenshannon', init_path=None, max_iter=1000000, early_stopping=100000)
-
Returns annealed spectrum for the topics in the Phi matrix with default metrics being Jensen-Shannon.
Parameters
phi_matrix
:np.array
offloat
- Phi matrix of N topics x M tokens from the model
t_coeff
:float
- coefficient that brings ambiguity to the process, bigger coefficient allows to jump from local minima.
start_topic
:int
- index of a topic to start and end the path with (Default value = 0)
metric
:str
- name of a metric to compute distances (Default value = 'jensenshannon')
init_path
:list
ofint
- initial route, contains all numbers from 0 to N-1, starts and ends with the same number from the given range (Default value = None)
max_iter
:int
- number of iterations for annealing (Default value = 1000000)
early_stopping
:int
- number of iterations without improvement before stop (Default value = 100000)
Returns
best_path
:list
ofint
- best path obtained during the run
best_score
:float
- length of the best path during the run
Expand source code
def get_annealed_spectrum(phi_matrix, t_coeff, start_topic=0, metric='jensenshannon', init_path=None, max_iter=1000000, early_stopping=100000,): """ Returns annealed spectrum for the topics in the Phi matrix with default metrics being Jensen-Shannon. Parameters ---------- phi_matrix : np.array of float Phi matrix of N topics x M tokens from the model t_coeff : float coefficient that brings ambiguity to the process, bigger coefficient allows to jump from local minima. start_topic : int index of a topic to start and end the path with (Default value = 0) metric : str name of a metric to compute distances (Default value = 'jensenshannon') init_path : list of int initial route, contains all numbers from 0 to N-1, starts and ends with the same number from the given range (Default value = None) max_iter : int number of iterations for annealing (Default value = 1000000) early_stopping : int number of iterations without improvement before stop (Default value = 100000) Returns ------- best_path : list of int best path obtained during the run best_score : float length of the best path during the run """ # noqa: W291 distance_m = distance.squareform(distance.pdist(phi_matrix, metric=metric)) np.fill_diagonal(distance_m, 10 * np.max(distance_m)) if init_path is None: current_path = get_nearest_neighbour_init(phi_matrix, metric=metric, start_topic=start_topic) else: current_path = init_path if len(current_path) < 6: warnings.warn('The path is too short, returning nearest neighbour solution.', UserWarning) return current_path, np.sum(distance_m[current_path[:-1], current_path[1:]]) best_score = np.sum(distance_m[current_path[:-1], current_path[1:]]) best_path = current_path running_score = best_score no_progress_steps = 0 for i in tqdm(range(max_iter), total=max_iter, leave=False): temperature_iter = t_coeff * (max_iter / (i + 1)) sequence = generate_index_candidates(len(current_path)) current_path, score = make_three_opt_swap(current_path, distance_m, sequence, temperature=temperature_iter) running_score += score if running_score < best_score: best_path = current_path best_score = running_score no_progress_steps = 0 else: no_progress_steps += 1 if no_progress_steps >= early_stopping: break return best_path, best_score
def get_nearest_neighbour_init(phi_matrix, metric='jensenshannon', start_topic=0)
-
Given the matrix calculates the initial path by nearest neighbour heuristic.
Parameters
phi_matrix
:np.array
offloat
- a matrix of N topics x M tokens from the model
metric
:str
- name of a metric to compute distances (Default value = 'jensenshannon')
start_topic
:int
- an index of a topic to start and end the path with (Default value = 0)
Returns
init_path
:list
ofint
- order of initial topic distribution
Expand source code
def get_nearest_neighbour_init(phi_matrix, metric='jensenshannon', start_topic=0): """ Given the matrix calculates the initial path by nearest neighbour heuristic. Parameters ---------- phi_matrix : np.array of float a matrix of N topics x M tokens from the model metric : str name of a metric to compute distances (Default value = 'jensenshannon') start_topic : int an index of a topic to start and end the path with (Default value = 0) Returns ------- init_path : list of int order of initial topic distribution """ init_path = [start_topic, ] connection_candidates = [int(topic) for topic in np.arange(phi_matrix.shape[0]) if topic not in init_path] neighbour_vectors = phi_matrix[connection_candidates, :] while len(connection_candidates) > 0: last_connection = phi_matrix[[init_path[-1]]] nearest_index = distance.cdist(last_connection, neighbour_vectors, metric=metric).argmin() init_path.append(connection_candidates[nearest_index]) connection_candidates = [int(topic) for topic in np.arange(phi_matrix.shape[0]) if topic not in init_path] neighbour_vectors = np.delete(neighbour_vectors, nearest_index, axis=0) init_path.append(start_topic) init_path = [int(topic) for topic in init_path] return init_path
def get_three_opt_path(path, distance_m, max_iter=20)
-
Iterative improvement based on 3 opt exchange.
Parameters
path
:list
ofint
- path to optimize
distance_m
:np.array
offloat
- square matrix of distances between all topics, attempt at optimizing path from the other end
max_iter
:int
- maximum iteration number (Default value = 20)
Returns
path
:list
ofint
- end optimization of the route
Expand source code
def get_three_opt_path(path, distance_m, max_iter=20): """ Iterative improvement based on 3 opt exchange. Parameters ---------- path : list of int path to optimize distance_m : np.array of float square matrix of distances between all topics, attempt at optimizing path from the other end max_iter : int maximum iteration number (Default value = 20) Returns ------- path : list of int end optimization of the route """ # noqa: W291 count_iter = 0 while True and count_iter <= max_iter: delta = 0 for segment in generate_all_segments(len(path)): path, d = make_three_opt_swap(path, distance_m, segment) delta += d count_iter += 1 if count_iter >= max_iter: warnings.warn('Reached maximum iterations', UserWarning) if delta >= 0: break return path
def make_three_opt_swap(path, distance_m, sequence, temperature=None)
-
Performs swap based on the selection candidates, allows for non-optimal solution to be accepted based on Boltzman distribution.
Parameters
path
:list
ofint
- current path
distance_m
:np.array
offloat
- square matrix of distances between all topics
sequence
:list
ofint
- list of indices to perform swap on
temperature
:float
- "temperature" parameter regulates strictness of
the new candidate choice (Default value = None)
if None - works in a regime when only better solutions are chosen
This regime is used for 3-opt heuristic
Returns
path
:list
ofint
- best path after the permutation
val
:float
- a value gained after the path permutation
Expand source code
def make_three_opt_swap(path, distance_m, sequence, temperature=None): """ Performs swap based on the selection candidates, allows for non-optimal solution to be accepted based on Boltzman distribution. Parameters ---------- path : list of int current path distance_m : np.array of float square matrix of distances between all topics sequence : list of int list of indices to perform swap on temperature : float "temperature" parameter regulates strictness of the new candidate choice (Default value = None) if None - works in a regime when only better solutions are chosen This regime is used for 3-opt heuristic Returns ------- path : list of int best path after the permutation val : float a value gained after the path permutation """ # noqa: W291 cut_connections = sum([[path[ind], path[ind + 1]] for ind in sequence], []) baseline = np.sum(distance_m[cut_connections[:-1], cut_connections[1:]]) # 6 == len(cut_connections) always new_connections = list(generate_three_opt_candidates(cut_connections, generate_index_candidates(6))) candidates = list(generate_three_opt_candidates(path, sequence)) scores = [np.sum(distance_m[new[:-1], new[1:]]) - baseline for new in new_connections] best_score = np.min(scores) if best_score < 0.0: path = candidates[np.argmin(scores)] val = best_score else: if temperature is None: val = 0.0 else: # 1e-8 saves from division by 0 boltzman = np.exp(- best_score / temperature) val = 0.0 if np.random.rand() > boltzman: path = candidates[np.argmin(scores)] val = best_score return path, val
Classes
class TopicSpectrumViewer (model, t_coeff=100000.0, start_topic=0, metric='jensenshannon', init_path=None, max_iter=1000000, early_stopping=100000, verbose=False, class_ids=None)
-
Class providing wrap around for functions that allow to view a collection of topics in order of their similarity to each other.
Parameters
model
:TopicModel
- topic model from TopicNet library
t_coeff
:float
- coefficient for annealing, value should be chosen
start_topic
:int
- number of model topic to start from
metric
:string
orfunction
- name of the default metric implemented in scipy or function that calculates metric based on the input matrix
init_path
:list
ofint
- initial tour that could be provided by the user
max_iter
:int
- number of iterations for annealing
early_stopping
:int
- number of iterations without improvement before stop
verbose
:boolean
- if print the resulting length of the tour
class_ids
:list
ofstr
- parameter for model.get_phi method contains list of modalities to obtain from the model (Default value = None)
Expand source code
class TopicSpectrumViewer(BaseViewer): def __init__( self, model, t_coeff=1e5, start_topic=0, metric='jensenshannon', init_path=None, max_iter=1000000, early_stopping=100000, verbose=False, class_ids=None ): """ Class providing wrap around for functions that allow to view a collection of topics in order of their similarity to each other. Parameters ---------- model : TopicModel topic model from TopicNet library t_coeff : float coefficient for annealing, value should be chosen start_topic : int number of model topic to start from metric : string or function name of the default metric implemented in scipy or function that calculates metric based on the input matrix init_path : list of int initial tour that could be provided by the user max_iter : int number of iterations for annealing early_stopping : int number of iterations without improvement before stop verbose : boolean if print the resulting length of the tour class_ids : list of str parameter for model.get_phi method contains list of modalities to obtain from the model (Default value = None) """ # noqa: W291 super().__init__(model=model) self.metric = metric self.start_topic = start_topic self.t_coeff = t_coeff self.init_path = init_path self.verbose = verbose self.early_stopping = early_stopping self.max_iter = max_iter self.class_ids = class_ids def view(self, class_ids=None): """ The class method returning ordered spectrum of the topics. Parameters ---------- class_ids : list of str parameter for model.get_phi method contains list of modalities to obtain from the model (Default value = None) ordered_topics : list of str topic names from the model ordered as spectrum """ # noqa: W291 # default get_phi returns N x T matrix while we implemented T x N if class_ids is None: class_ids = self.class_ids model_phi = self.model.get_phi(class_ids=class_ids).T spectrum, distance = get_annealed_spectrum(model_phi.values, self.t_coeff, metric=self.metric, start_topic=self.start_topic, init_path=self.init_path, max_iter=self.max_iter, early_stopping=self.early_stopping,) if self.verbose: print('the resulting path length: ', distance) ordered_topics = list( model_phi .iloc[spectrum] .index.values ) return ordered_topics def view_from_jupyter( self, class_ids=None, display_output=True, give_html=False, **kwargs ): """ TopicSpectrumViewer method recommended for use from jupyter notebooks returns ordered list of topics minimizing path that connects all of them in topic space and visualizes their top tokens in given topic order Parameters ---------- class_ids : list of int class ids for documents in topic needed only for tfidf method display_output if provide output at the end of method run give_html return html string generated by the method Returns ------- out_html : str html string of the output Another Parameters ------------------ **kwargs *kwargs* are optional `~.TopTokenViewer` properties """ from IPython.display import display_html if 'digits' in kwargs: digits = kwargs.pop('digits') else: digits = 5 spectrum_order = self.view(class_ids=class_ids) print('Viewing topics in the following order:') topic_order = '→'.join(spectrum_order) display_html(topic_order, raw=True) out_html = (TopTokensViewer( model=self.model, class_ids=class_ids, **kwargs ) .view_from_jupyter( topic_names=spectrum_order, digits=digits, display_output=display_output, give_html=give_html) ) if give_html: return '<br />'.join([topic_order, out_html])
Ancestors
Methods
def view(self, class_ids=None)
-
The class method returning ordered spectrum of the topics.
Parameters
class_ids
:list
ofstr
- parameter for model.get_phi method contains list of modalities to obtain from the model (Default value = None)
ordered_topics
:list
ofstr
- topic names from the model ordered as spectrum
Expand source code
def view(self, class_ids=None): """ The class method returning ordered spectrum of the topics. Parameters ---------- class_ids : list of str parameter for model.get_phi method contains list of modalities to obtain from the model (Default value = None) ordered_topics : list of str topic names from the model ordered as spectrum """ # noqa: W291 # default get_phi returns N x T matrix while we implemented T x N if class_ids is None: class_ids = self.class_ids model_phi = self.model.get_phi(class_ids=class_ids).T spectrum, distance = get_annealed_spectrum(model_phi.values, self.t_coeff, metric=self.metric, start_topic=self.start_topic, init_path=self.init_path, max_iter=self.max_iter, early_stopping=self.early_stopping,) if self.verbose: print('the resulting path length: ', distance) ordered_topics = list( model_phi .iloc[spectrum] .index.values ) return ordered_topics
def view_from_jupyter(self, class_ids=None, display_output=True, give_html=False, **kwargs)
-
TopicSpectrumViewer method recommended for use from jupyter notebooks returns ordered list of topics minimizing path that connects all of them in topic space and visualizes their top tokens in given topic order
Parameters
class_ids
:list
ofint
- class ids for documents in topic needed only for tfidf method
display_output
- if provide output at the end of method run
give_html
- return html string generated by the method
Returns
out_html
:str
- html string of the output
Another Parameters
kwargs kwargs are optional
~.TopTokenViewer
propertiesExpand source code
def view_from_jupyter( self, class_ids=None, display_output=True, give_html=False, **kwargs ): """ TopicSpectrumViewer method recommended for use from jupyter notebooks returns ordered list of topics minimizing path that connects all of them in topic space and visualizes their top tokens in given topic order Parameters ---------- class_ids : list of int class ids for documents in topic needed only for tfidf method display_output if provide output at the end of method run give_html return html string generated by the method Returns ------- out_html : str html string of the output Another Parameters ------------------ **kwargs *kwargs* are optional `~.TopTokenViewer` properties """ from IPython.display import display_html if 'digits' in kwargs: digits = kwargs.pop('digits') else: digits = 5 spectrum_order = self.view(class_ids=class_ids) print('Viewing topics in the following order:') topic_order = '→'.join(spectrum_order) display_html(topic_order, raw=True) out_html = (TopTokensViewer( model=self.model, class_ids=class_ids, **kwargs ) .view_from_jupyter( topic_names=spectrum_order, digits=digits, display_output=display_output, give_html=give_html) ) if give_html: return '<br />'.join([topic_order, out_html])